Math 551: Scientific Programming

Lecture 7: Newton's method and the secant method

Weiqi Chu

Department of Mathematics and Statistics, UMass Amherst

Last time

- Fixed-point iterations
- Convergence rate

Today: Sections 1.3 & 1.4

- Relation between fixed-point problems and root-finding problems
- Newton's method
- Secant method

Review: Fixed point iterations

Suppose x = r is the solution of f(x) = 0 on [a, b]. To find the value of r:

- 1. we construct a fixed-point problem for g, so that x=r is the fixed-point of g this means that g(r)=r
- 2. we solve this fixed-point problem using fixed-point iterations

$$x_{n+1} = g(x_n)$$
 for $n = 0, 1, \dots$

Theorem: The sequence x_n converges to r if g is a contraction:

$$\max_{z \in [a,b]} |g'(z)| = \kappa < 1.$$

Fixed-point problems VS root-finding problems

From fixed-point problems to root finding problems:

Fixed-point problems VS root-finding problems

From fixed-point problems to root finding problems:

From root-finding problems to fixed-point problems:

Suppose x = r is the solution of f(x) = 0 on [a, b]. To find the value of r:

- 1. we construct a fixed-point problem for g, so that x=r is the fixed-point of g this means that g(r)=r
- 2. we solve this fixed-point problem using fixed-point iterations

$$x_{n+1} = g(x_n)$$
 for $n = 0, 1, \dots$

Theorem: The sequence x_n converges to r if g is a contraction:

$$\max_{z \in [a,b]} |g'(z)| = \kappa < 1.$$

Example

Question: Build a fixed-point problem to find the root of $f(x) = x^2 - 2 = 0$.

One idea: Construct g(x) = f(x) + x and apply fixed-point iterations to g(x) using

$$x_{n+1} = g(x_n), \quad n = 0, 1, 2, \ldots$$

Does x_n converge to $\sqrt{2}$?

Example

Question: Build a fixed-point problem to find the root of $f(x) = x^2 - 2 = 0$.

One idea: Construct g(x) = f(x) + x and apply fixed-point iterations to g(x) using

$$x_{n+1} = g(x_n), \quad n = 0, 1, 2, \ldots$$

Does x_n converge to $\sqrt{2}$?

NO!!! The above method does not converge to x_* so such a fixed-point construction does not work!

Newton's Method

An iterative method to solve f(x) = 0 for x

Iterative formula for Newton's Method:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Use a straight line to approximate the function and find the next step point.

Convergence of Newton's method

Theorem

Suppose $f(x) \in C^2[a, b]$ and $f'(x^*) \neq 0$. There exists $\delta > 0$ such that Newton's method converges quadratically for $x_0 \in [x^* - \delta, x^* + \delta]$.

proof sketch (won't be tested).

- 1. Continuity $+ f'(x^*) \neq 0 \Rightarrow$ exists $\delta > 0$ with $f'(x) \neq 0$ all $x \in [x^* \delta, x^* + \delta]$
- 2. Let $g(x) = x \frac{f(x)}{f'(x)}$.
- 3. g(x) well-defined on $[x^* \delta, x^* + \delta]$ and $g'(x^*) = 0$.
- 4. the fixed point iteration of g(x) converges quadratically.

Example

Apply Newton's method to solve $f(x) = x^2 - 2 = 0$. This is the same algorithm as the Babylonian square-root method.

The Secant Method

- Newton's method: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
 - Newton's method requires computing $f'(x_n)$. Computing f' could be expensive or impossible.
- Improvement idea: Use $f'(x_n) \approx \frac{f(x_n) f(x_{n-1})}{x_n x_{n-1}}$.

The Secant Method

- Newton's method: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
 - Newton's method requires computing $f'(x_n)$. Computing f' could be expensive or impossible.
- Improvement idea: Use $f'(x_n) \approx \frac{f(x_n) f(x_{n-1})}{x_n x_{n-1}}$.
- Secant Method: $x_{n+1} = x_n \frac{f(x_n)(x_n x_{n-1})}{f(x_n) f(x_{n-1})}$. Store and reuse $f(x_{n-1})$.
- \bullet Converges with rate $\phi = \frac{1+\sqrt{5}}{2} \approx 1.618.$

Geometric illustration of secant method

Other root-finding methods

- Method of False Position
- Muller's Method
- Inverse Quadratic Interpolation
- Brent's Method

Next time: Solving systems of linear and nonlinear equation